Overview of the Reconnection Scaling Experiment at LANL and

first experimental results

I. Furno

T. Intrator, E. Torbert, J. Campbell, C. Carey, W. Fienup and C. Werley

Los Alamos National Laboratory Los Alamos, NM 87544

44th Annual Meeting of the APS Division of Plasma Physics, November 11-15, 2002, Orlando, Florida

Abstract

- Three dimensional magnetic reconnection is a major issue in both astrophysical and laboratory plasmas.
- The Reconnection Scaling Experiment (RSX) is a new device for the study of 3D magnetic reconnection at LANL.
- RSX relies on plasma gun technology to generate high density (10¹⁴ cm³), high current (J~100 A/cm²), ohmically heated (T_e~10-20 eV) plasma channels.
- The machine design is reviewed. First experimental results on the interaction of two current channels are presented.

RSX: device and plasma guns (1)

- Parallel current channels are produced using 4 plasma guns, movable in the radial direction.
- Linear vacuum vessel (~ 4 m length, 50 cm diameter), good accessibility
 ⇒ ease of diagnostics.
- 12 magnet coils, 0.1 F, 700 V, SCR switched capacitor bank ⇒ B_z < 1000 Gauss.

RSX: device and plasma guns (2)

Miniaturized plasma source

- Plasma guns produce:
 - V_{bias} =0 \Rightarrow stream of neutral plasma $V_{bias} \neq 0$ \Rightarrow current channel
- Gun arc and bias are energized by SCR switched capacitor banks:

$$V_{arc}$$
~100 V, I_{arc} =0.3-1 kA, V_{bias} =0-300 V, I_{bias} <1kA.

Typical discharge sequence

- Duration of arc discharge is ~10 ms.
- Duration of bias discharge can be varied between 0.5 to 8 ms.

RSX advantages and plasma parameters

- Plasma guns are a reliable technology (to date > 1000 shots) to create current channels
 ⇒ excellent shot to shot reproducibility.
- Linear geometry allows a truly 3D reconnection experiment.
- Important plasma parameters can be scaled independently:

```
density is controlled by gas plenum ( 5 – 50 Psi) \Rightarrow n<sub>e</sub> ~ 10<sup>12</sup>-10<sup>14</sup> cm<sup>-3</sup> \Rightarrow \delta_e ~0.3-2 mm, \delta_i ~1-7 cm
```

plasma current and B_{rec} are controlled by $V_{bias} \Rightarrow B_{rec} < 100$ Gauss plasma channels are ohmically heated $\Rightarrow T_e \sim 10\text{-}20$ eV, S ~ 800 .

Main diagnostics

- Miniaturized Rogowski probe ⇒ current channel profile 0.7 cm² detecting area, time response 100 ns
- Three dimensional magnetic probe
 3.75 mm ID, 30 turns each, time response 100 ns
- Fast CCD Phantom 4 camera ⇒ visible light emission 8000 frames/s, 20 ns minimum exposure time, 256*256 pixels
- Triple electrostatic probe \Rightarrow T_e, n_e profile and fluctuations shot averaged I-V traces, real time Te measurement
- Plans for the future:
 3 axes movable probe drive ⇒ 3D scan of reconnection region

Characterization of current channels (1)

- Excellent shot to shot reproducibility: 10 consecutive discharges show a reproducibility of ~7% in the plasma current density. Data were taken with a Rogowski probe at 100 cm away from the plasma gun.
- Reconnecting B_{rec} is decoupled from B_z and can be scaled by changing V_{bias}.

Characterization of current channels (2)

- The plasma column is ohmically heated by the plasma current.
- Electron-neutral collisions are negligible: plasma column is ~50% ionized in this experiment. τ_{ei} ~8-80ns for T_e ~10-20eV, σ_{ei} ~1.2*10⁻⁷ cm³/s, τ_{en} ~(7 70) * τ_{ei}

Experiments with two plasma guns: evidence for current channel merging (1)

• Fast images (270 μ s frame to frame, 55 μ s exposure time) of visible light emission with two plasma guns \Rightarrow merging of the two current channels along RSX axis.

Experiments with two plasma guns: evidence for current channel merging (2)

• Current profile measurement show one single merged current channel at z=50 cm (large flux annihilation?).

Summary

- RSX is a new laboratory experiment for studying 3D magnetic reconnection.
- The innovative plasma gun technology is used to create interacting current channels in linear geometry allowing a fully 3D reconnection experiment.
- A wide variety of plasmas can be created and plasma parameters can be scaled independently which are crucial for reconnection physics.
- Preliminary visible light emission and current profile measurements during the interaction of two current channels show coalescence of the current channels.
- Plan for the future: 3D reconnection region will be studied.

